Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Hum Reprod ; 39(3): 504-508, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224259

RESUMO

Genetic causes account for 10-15% of male factor infertility, making the genetic investigation an essential and useful tool, mainly in azoospermic and severely oligozoospermic men. In these patients, the most frequent findings are chromosomal abnormalities and Y chromosome long arm microdeletions, which cause a primary severe spermatogenic impairment with classically increased levels of FSH. On the other hand, polymorphisms in the FSH receptor (FSHR) and FSH beta chain (FSHB) genes have been associated with different FSH plasma levels, due to variations in the receptor sensitivity (FSHR) or in the production of FSH from the pituitary gland (FSHB). Here, we describe an unusual patient with a combined genetic alteration (classic AZFc deletion of the Y chromosome and TT homozygosity for the -211G>T polymorphism in the FSHB gene (rs10835638)), presenting with cryptozoospermia, severe hypospermatogenesis, and normal LH and testosterone plasma concentrations, but low FSH levels. The patient partially benefitted from treatment with FSH (150 IU three times/week for 6 months) which allowed him to cryopreserve enough motile spermatozoa to be used for intracytoplasmic sperm injection. According to our knowledge, this is the first report of an infertile man with AZFc microdeletion with low FSH plasma concentrations related to homozygosity for the -211G>T polymorphism in the FSHB gene.


Assuntos
Deleção Cromossômica , Infertilidade Masculina , Oligospermia , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Sêmen , Infertilidade Masculina/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Oligospermia/genética , Cromossomos Humanos Y/genética
2.
Poult Sci ; 103(2): 103358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176363

RESUMO

Investigating the impact of early egg production selection (the first 90 d of laying) on egg production features, cumulative selection response (CSR), and the mRNA expression of gonadotropins (FSHß and LHß), and their receptors (FSHR and LHR), in Japanese quails was the goal. The selection experiment involved 1293 females in all, 257 from the base group and 1036 from the 4 selected generations. Age and body weight at sexual maturity (ASM, BWSM), weight of the first egg (WFE), days to the first 10 eggs (DF10E), egg mass for the first 10 eggs (EMF10E), egg weight (EW), egg number at the first 90 d of laying (EN90D), and egg mass at the first 90 d of laying (EM90D) were all recorded. Most egg production traits had heritability estimates that were low to moderate and ranged from 0.17 to 0.33., where the highest estimates were reported for EN90D (0.33) and BWSM (0.32). With the exception of EN90D, low to moderate positive genetic correlations were observed between ASM and other egg production traits (0.17-0.44). The fourth generation showed significantly (P < 0.05) lower ASM and DF10E but higher BWSM, WFE, EN90D, EM10E, and EM90D when compared with the base generation. CSR were significant (P < 0.05) for ASM (-6.67 d), BWSM (27.13 g), WFE (0.93 g), DF10E (-1.25 d), EN90D (7.24 egg), EM10E (10.57 g), and EM90D (140.0 g). FSHß, LHß, FSHR, and LHR gene mRNA expression was considerably (P < 0.05) greater in the fourth generation compared to the base generation. In conclusion, selection programs depending on the efficiency of egg production (EN90D) could improve the genetic gain of egg production traits and upregulate the mRNA expression of FSHß, LHß, FSHR, and LHR genes in selected quails (fourth generation). These findings might help to enhance breeding plans and create commercial lines of high egg production Japanese quails.


Assuntos
Coturnix , Subunidade beta do Hormônio Folículoestimulante , Feminino , Animais , Subunidade beta do Hormônio Folículoestimulante/genética , Coturnix/fisiologia , Hormônio Luteinizante Subunidade beta/genética , Galinhas/genética , Óvulo/metabolismo , RNA Mensageiro/metabolismo
3.
Einstein (Sao Paulo) ; 21: eAO0483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909652

RESUMO

OBJECTIVE: The follicle-stimulating hormone subunit beta gene rs10835638 variant (c.-211G>T) may have detrimental effects on fertility and protective effects against endometriosis. A case-control analysis was performed, aiming to investigate the possible relationship between this variant and the development and/or progression of endometriosis. METHODS: This study included 326 women with endometriosis and 482 controls without endometriosis, both confirmed by inspection of the pelvic cavity during surgery. Genotyping was performed using a TaqMan real-time polymerase chain reaction assay. Genotype and allele frequencies and genetic models were compared between the groups. RESULTS: The genotype and allele frequencies of the rs10835638 variant did not differ between women with and those without endometriosis. Subdividing the endometriosis group into fertile and infertile groups did not result in a significant difference in these frequencies. However, the subgroup with minimal/mild endometriosis had a higher frequency of the GT genotype than the Control Group, regardless of fertility. The T allele was significantly more common in women with minimal/mild endometriosis than in the Control Group in the recessive model. CONCLUSION: The T allele is associated with the development of minimal/mild endometriosis in Brazilian women.


Assuntos
Endometriose , Humanos , Feminino , Endometriose/genética , Brasil , Polimorfismo de Nucleotídeo Único/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Genótipo , Frequência do Gene , Estudos de Casos e Controles
4.
Cells ; 12(22)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998369

RESUMO

(1) Fshß and Lhß showed stronger signals and higher transcript levels from 590 to 1050 dph than at earlier stages, implying their active involvement during primary oocyte development. (2) Fshß and Lhß at lower levels were detected during the phases of ovarian differentiation and oogonial proliferation. (3) E2 concentrations increased significantly at 174, 333, and 1435 dph, while T concentrations exhibited significant increases at 174 and 333 dph. These findings suggest potential correlations between serum E2 concentrations and the phases of oogonial proliferation and pre-vitellogenesis.


Assuntos
Bass , Feminino , Animais , Bass/metabolismo , Diferenciação Sexual , Hormônio Liberador de Gonadotropina , Hormônios Esteroides Gonadais , Subunidade beta do Hormônio Folículoestimulante/genética , Hormônio Luteinizante Subunidade beta , Encéfalo/metabolismo
5.
Fish Physiol Biochem ; 49(5): 911-923, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548828

RESUMO

The two gonadotropins, FSH and LH, stimulate growth and development of the gonads through gonadal biosynthesis of steroid hormones and growth factors. To date, cDNA sequences encoding gonadotropin subunits have been isolated and characterized from a large number of fish species. Recently, we successfully cloned and characterized gonadotropins (LHß, FSHß, and GPα) from the pituitary glands of the catfish, Heteropneustes fossilis. In the present study, we describe herein the production of recombinant stinging catfish, H. fossilis (hf) FSH (rhfFSH) and LH (rhfLH) using the methylotrophic yeast P. pastoris expression system. We further explored the hypothesis that the recombinant gonadotropins can modulate the hypothalamus-pituitary-ovarian (HPO) axis genes (avt, it, gnrh2, kiss2, and cyp19a1a) and regulate their transcriptional profile and steroid levels in relation to their annual developmental stage during preparatory and pre-spawning phases under in-vitro conditions. We found that the different concentrations of recombinant rhfFSH and rhfLH significantly stimulated E2 levels in the preparatory and prespawning season, and also upregulated gonadal aromatase gene expression in a dose dependent manner. Our results demonstrate that the yeast expression system produced biologically active recombinant catfish gonadotropins, enabling the study of their function in the catfish.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/fisiologia , Saccharomyces cerevisiae/metabolismo , Gonadotropinas/genética , Gonadotropinas/farmacologia , Gonadotropinas/metabolismo , Esteroides , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445833

RESUMO

Pituitary gonadotropins perform essential functions in mammalian reproduction by stimulating gametogenesis and steroidogenesis in the ovaries and testicles. EZH2 is a histone methyltransferase that inhibits proliferation and aggravates apoptosis in stem cells subjected to pathological stimuli. However, the expression and molecular mechanisms of EZH2 in pituitary cells in vitro have not been extensively studied. In this study, the relative abundances of EZH2 mRNA (p < 0.01) and protein (p < 0.05) expression were larger in the pituitary cells of Hu sheep with relatively greater fecundity (GF) compared to those with lesser fecundity (LF). Loss-of-function examinations demonstrated that EZH2 gene knockdown led to an earlier induction of apoptosis in sheep pituitary cells (PCs). The relative abundance of CASP3, CASP9, and BAX was increased (p < 0.01), while BCL2's abundance was less decreased (p < 0.01) in PCs where there was EZH2 gene knockdown. Additionally, cell proliferation (p < 0.01) and viability (p < 0.01) were decreased in EZH2-knockdown sheep PCs, and the cell cycle was blocked compared to a negative control (NC). Notably, EZH2 gene knockdown led to reduced abundances of gonadotropin subunit gene transcripts (FSHß, p < 0.05) and reduced FSH release (p < 0.01) from PCs. EZH2 gene knockdown led to reduced phosphorylation of AKT, ERK, and mTOR (p < 0.01). The results suggest that EZH2 regulates pituitary cell proliferation, apoptosis, and FSH secretion through modulation of the AKT/ERK signaling pathway, providing a foundation for further study of pituitary cell functions.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Ovinos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Técnicas de Silenciamento de Genes , Transdução de Sinais/fisiologia , Subunidade beta do Hormônio Folículoestimulante/genética , Proliferação de Células/genética , Mamíferos/genética
7.
Mol Cell Endocrinol ; 574: 111971, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301504

RESUMO

Follicle-stimulating hormone (FSH) is a glycoprotein that is assembled as a heterodimer of α/ß subunits in gonadotropes. Each subunit contains two N-glycan chains. Our previous in vivo genetic studies identified that at least one N-glycan chain must be present on the FSHß subunit for efficient FSH dimer assembly and secretion. Moreover, macroheterogeneity observed uniquely on human FSHß results in ratiometric changes in age-specific FSH glycoforms, particularly during menopausal transition. Despite the recognition of many prominent roles of sugars on FSH including dimer assembly and secretion, serum half-life, receptor binding and signal transduction, the N-glycosylation machinery in gonadotropes has never been defined. Here, we used a mouse model in which gonadotropes are GFP-labeled in vivo and achieved rapid purification of GFP+ gonadotropes from pituitaries of female mice at reproductively young, middle, and old ages. We identified by RNA-seq analysis 52 mRNAs encoding N-glycosylation pathway enzymes expressed in 3- and 8-10-month-old mouse gonadotropes. We hierarchically mapped and localized the enzymes to distinct subcellular organelles within the N-glycosylation biosynthetic pathway. Of the 52 mRNAs, we found 27 mRNAs are differentially expressed between the 3- and 8-10-month old mice. We subsequently selected 8 mRNAs which showed varying changes in expression for confirmation of abundance in vivo via qPCR analysis, using more expanded aging time points with distinct 8-month and 14-month age groups. Real time qPCR analysis indicated dynamic changes in expression of N-glycosylation pathway enzyme-encoding mRNAs across the life span. Notably, computational analysis predicted the promoters of genes encoding these 8 mRNAs contain multiple high probability binding sites for estrogen receptor-1 and progesterone receptor. Collectively, our studies define the N-glycome and identify age-specific dynamic changes in mRNAs encoding N-glycosylation pathway enzymes in mouse gonadotropes. Our studies suggest the age-related decline in ovarian steroids may regulate expression of N-glycosylation enzymes in mouse gonadotropes and explain the age-related N-glycosylation shift previously observed on human FSHß subunit in pituitaries of women.


Assuntos
Subunidade beta do Hormônio Folículoestimulante , Hormônio Foliculoestimulante , Camundongos , Feminino , Humanos , Animais , Lactente , Glicosilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade alfa de Hormônios Glicoproteicos/genética , Hormônio Foliculoestimulante Humano , Análise de Sequência de RNA
8.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36951304

RESUMO

Follicle-stimulating hormone (FSH), a dimeric glycoprotein produced by pituitary gonadotrope cells, regulates spermatogenesis in males and ovarian follicle growth in females. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates FSHß subunit gene (Fshb) transcription, though the underlying mechanisms are poorly understood. To address this gap in knowledge, we examined changes in pituitary gene expression in GnRH-deficient mice (hpg) treated with a regimen of exogenous GnRH that increases pituitary Fshb but not luteinizing hormone ß (Lhb) messenger RNA levels. Activating transcription factor 3 (Atf3) was among the most upregulated genes. Activating transcription factor 3 (ATF3) can heterodimerize with members of the activator protein 1 family to regulate gene transcription. Co-expression of ATF3 with JunB stimulated murine Fshb, but not Lhb, promoter-reporter activity in homologous LßT2b cells. ATF3 also synergized with a constitutively active activin type I receptor to increase endogenous Fshb expression in these cells. Nevertheless, FSH production was intact in gonadotrope-specific Atf3 knockout [conditional knockout (cKO)] mice. Ovarian follicle development, ovulation, and litter sizes were equivalent between cKOs and controls. Testis weights and sperm counts did not differ between genotypes. Following gonadectomy, increases in LH secretion were enhanced in cKO animals. Though FSH levels did not differ between genotypes, post-gonadectomy increases in pituitary Fshb and gonadotropin α subunit expression were more pronounced in cKO than control mice. These data indicate that ATF3 can selectively stimulate Fshb expression in vitro but is not required for FSH production in vivo.


Assuntos
Fator 3 Ativador da Transcrição , Hormônio Foliculoestimulante , Feminino , Camundongos , Masculino , Animais , Hormônio Foliculoestimulante/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Regulação da Expressão Gênica , Sêmen/metabolismo , Gonadotropinas , Hormônio Liberador de Gonadotropina/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética
9.
Anim Biotechnol ; 34(9): 4713-4720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36927230

RESUMO

The estrogen receptor (ESR) gene and follicle-stimulating hormone ß (FSHß) gene are responsible for litter traits. The present study aimed to verify the polymorphisms of ESR and FSHß and assess their effects on the litter traits in 201 Large White pigs. Four SNPs (g.C669T, g.A1296G, g.C1665T and g.A1755G) were found in ESR. The TT genotype at g.C1665T locus and AA genotype at g.A1755G locus could significantly increase the total litter size of the first litter of American Large White pigs (p < 0.05). Eight SNPs were found in exon 3 of FSHß. The AA genotype at g.A511G locus, AA and AG genotypes at g.A617G locus, CC and CT genotypes at g.C630T locus, CT and TT genotypes at g.C652T locus, CT and TT genotypes at g.C735T locus, AA and AG genotypes at g.A746G, AA and AG genotypes at g.A921G and CT genotype at g.C678T could significantly increase the litter size of different strains of Large White pigs (p < 0.05). Our study revealed that the genetic variations of ESR and FSHß were closely related to the litter trait of Large White pigs. Therefore, ESR and FSHß genes could be used as molecular markers for the genetic selection of Large White pigs.


Assuntos
Subunidade beta do Hormônio Folículoestimulante , Polimorfismo de Nucleotídeo Único , Gravidez , Feminino , Suínos/genética , Animais , Subunidade beta do Hormônio Folículoestimulante/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Tamanho da Ninhada de Vivíparos/genética
10.
Fertil Steril ; 119(2): 180-183, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496082

RESUMO

Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are synthesized in the same pituitary cell, i.e., gonadotrope. They both consist of a common α-subunit that is noncovalently assembled with a hormone-specific ß-subunit in gonadotropes. The heterodimers exit gonadotropes through distinct modes of trafficking and secretion. The FSH is constitutively secreted, whereas LH is secreted in pulses through the regulated pathway that involves dense core granules. Based on several in vitro mutagenesis studies, the carboxy terminus heptapeptide of human LH-ß subunit is identified as a gonadotrope sorting determinant. When heptapeptide is genetically fused to human FSH-ß subunit and the mutant transgene expressed on a Fshb null genetic background, the rerouted FSH mutant dimer enters the LH secretory pathway, stored in dense core granules, coreleased with LH on gonadotropin releasing hormone stimulation and rescues Fshb null mice as efficiently as the constitutively secreted wild-type FSH. The rerouted FSH markedly suppresses follicle atresia and significantly enhances ovulations per cycle and prolongs the female reproductive life span. Gonadotropin rerouting is emerging as a novel paradigm to treat ovarian dysfunction in women, and may explain the origins of ovarian cyclicity as well as provide clues to understand gene and protein networks that maintain optimal ovarian function throughout the female reproductive life span.


Assuntos
Hormônio Foliculoestimulante , Hormônio Luteinizante , Camundongos , Animais , Feminino , Humanos , Hormônio Liberador de Gonadotropina , Gonadotropinas , Subunidade beta do Hormônio Folículoestimulante/genética , Camundongos Knockout
11.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077179

RESUMO

Orexin plays a key role in the regulation of sleep and wakefulness and in feeding behavior in the central nervous system, but its receptors are expressed in various peripheral tissues including endocrine tissues. In the present study, we elucidated the effects of orexin on pituitary gonadotropin regulation by focusing on the functional involvement of bone morphogenetic proteins (BMPs) and clock genes using mouse gonadotrope LßT2 cells that express orexin type 1 (OX1R) and type 2 (OX2R) receptors. Treatments with orexin A enhanced LHß and FSHß mRNA expression in a dose-dependent manner in the absence of GnRH, whereas orexin A in turn suppressed GnRH-induced gonadotropin expression in LßT2 cells. Orexin A downregulated GnRH receptor expression, while GnRH enhanced OX1R and OX2R mRNA expression. Treatments with orexin A as well as GnRH increased the mRNA levels of Bmal1 and Clock, which are oscillational regulators for gonadotropin expression. Of note, treatments with BMP-6 and -15 enhanced OX1R and OX2R mRNA expression with upregulation of clock gene expression. On the other hand, orexin A enhanced BMP receptor signaling of Smad1/5/9 phosphorylation through upregulation of ALK-2/BMPRII among the BMP receptors expressed in LßT2 cells. Collectively, the results indicate that orexin regulates gonadotropin expression via clock gene expression by mutually interacting with GnRH action and the pituitary BMP system in gonadotrope cells.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética , Hormônio Luteinizante Subunidade beta/genética , Orexinas/metabolismo , Hipófise/metabolismo , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas , Camundongos , Hipófise/citologia , RNA Mensageiro
12.
Gen Comp Endocrinol ; 323-324: 114035, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395227

RESUMO

The Nile perch (np; Lates niloticus) is a freshwater teleost species with a potential for aquaculture in freshwater surroundings. However, wild-caught breeders have persistently failed to spawn spontaneously in captivity. Cloning of the gonadotropin subunits and analysing seasonal variation in reproductive hormone levels for a 1-year period were done to gain knowledge on the physiological basis underlying the reproductive biology of np. The ß-follicle-stimulating hormone (FSH-ß) and ß-luteinizing hormone (LH-ß) subunits and their common α-glycoprotein (Gph-α) subunit were cloned using 3' and 5' RACE-PCR. The nucleotide sequences of the npgph-α, npfsh-ß, and nplh-ß subunits were 664, 580 and 675 nucleotides in length, encoding peptides of 124, 120 and 148 amino acids, respectively. The deduced amino acid sequence of each mature subunit showed high similarity with its counterparts in other teleost. Sequence analysis showed that npFSH-ß is more similar to higher vertebrate FSH-ßs than to higher vertebrate LH-ßs. Heterologous immunoassay was calibrated to analyse pituitary LH levels. While the LH immunoassay showed parallelism of npLH with that of tilapia (ta), no parallelism for FSH was found. Levels of pituitary LH were higher in females at gonadal stages of vitellogenic oocytes, mature secondary oocytes and mature tertiary oocytes with migrating nucleus than in pre-vitellogenic oocytes and early and late perinucleolus oocytes. Using competitive steroid ELISA, variations in the levels of the steroid hormones 11-ketotestosterone (11-KT) in males and E2 in females were characterized in relation to month and reproductive index of Nile perch. Our findings show that in females, gonadosomatic index and plasma E2 were highly correlated (R2 = 0.699, n = 172) and peaked from September to November while in males, the gonadosomatic index and plasma 11-KT peaked from October to November. In female fish, both steroid hormones were detected in the plasma but greatly varied in concentrations. E2 in particular, increased with the developmental stage of the gonads. The levels of steroid hormones, E2 and 11-KT in females and males respectively increased with fish size (total lengths) and suggest that females mature at a body length of 40-59 cm than their counter part males that mature at a total length of 60-70 cm. Taken together, we describe seasonal endocrine differences in wild-caught adult Nile perch which could potentially be exploited to manipulate the reproductive axis in cultured breeders.


Assuntos
Subunidade beta do Hormônio Folículoestimulante , Percas , Animais , Clonagem Molecular , Feminino , Hormônio Foliculoestimulante/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , Hipófise/metabolismo , Estações do Ano , Esteroides/metabolismo
13.
Andrologia ; 54(5): e14383, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35124809

RESUMO

Genetic variants affecting the interaction of FSH-FSHR may negatively affect the male reproductive potential. The aim of this case-control study was to evaluate FSHB c.-211G>T and FSHR c.2039A>G variants in a cohort of infertile men from Central Black Sea Region in Turkey. One hundred and nine infertile men and 50 proven fertile controls were enrolled in the study. Genotyping was assessed by RFLP. The genotype frequencies of FSHB -211G>T and FSHR 2039A>G showed significant variation between infertile and fertile groups (χ2 , p = 0.046, GG vs. GT+TT, and p = 0.008, AA vs. AG+GG). FSHB -211GG was found to be higher in patients with OAT compared to fertile controls (82.3% vs. 64.0%, χ2 , p = 0.028). The distribution of FSHR 2039A>G alleles was different between infertile and fertile men (χ2 , p = 0.005, total infertile vs. fertile groups, p = 0.019, OAT vs. NOA vs. fertile groups). Further analysis showed that the frequencies of FSHR 2039AA wild-type genotype were higher in the oligoasthenoteratozoospermic and non-obstructive azoospermic groups compared with the controls (χ2 , 39.3% vs. 17.0%, p = 0.012, and 37.5% vs. 17.0%, p = 0.025 respectively). Our results showed wild-types of FSHB -211G>T and FSHR 2039A>G variants may cause susceptibility to male infertility in the Central Black Sea Region of Turkey.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptores do FSH , Mar Negro , Estudos de Casos e Controles , Subunidade beta do Hormônio Folículoestimulante/genética , Genótipo , Humanos , Masculino , Receptores do FSH/genética , Turquia/epidemiologia
14.
Hum Reprod ; 37(2): 352-365, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34791234

RESUMO

STUDY QUESTION: Can we identify novel variants associated with polycystic ovary syndrome (PCOS) by leveraging the unique population history of Northern Europe? SUMMARY ANSWER: We identified three novel genome-wide significant associations with PCOS, with two putative independent causal variants in the checkpoint kinase 2 (CHEK2) gene and a third in myosin X (MYO10). WHAT IS KNOWN ALREADY: PCOS is a common, complex disorder with unknown aetiology. While previous genome-wide association studies (GWAS) have mapped several loci associated with PCOS, the analysis of populations with unique population history and genetic makeup has the potential to uncover new low-frequency variants with larger effects. STUDY DESIGN, SIZE, DURATION: A population-based case-control GWAS was carried out. PARTICIPANTS/MATERIALS, SETTING, METHODS: We identified PCOS cases from national registers by ICD codes (ICD-10 E28.2, ICD-9 256.4, or ICD-8 256.90), and all remaining women were considered controls. We then conducted a three-stage case-control GWAS: in the discovery phase, we had a total of 797 cases and 140 558 controls from the FinnGen study. For validation, we used an independent dataset from the Estonian Biobank, including 2812 cases and 89 230 controls. Finally, we performed a joint meta-analysis of 3609 cases and 229 788 controls from both cohorts. Additionally, we reran the association analyses including BMI as a covariate, with 2169 cases and 160 321 controls from both cohorts. MAIN RESULTS AND THE ROLE OF CHANCE: Two out of the three novel genome-wide significant variants associating with PCOS, rs145598156 (P = 3.6×10-8, odds ratio (OR) = 3.01 [2.02-4.50] minor allele frequency (MAF) = 0.005) and rs182075939 (P = 1.9×10-16, OR = 1.69 [1.49-1.91], MAF = 0.04), were found to be enriched in the Finnish and Estonian populations and are tightly linked to a deletion c.1100delC (r2 = 0.95) and a missense I157T (r2 = 0.83) in CHEK2. The third novel association is a common variant near MYO10 (rs9312937, P = 1.7 × 10-8, OR = 1.16 [1.10-1.23], MAF = 0.44). We also replicated four previous reported associations near the genes Erb-B2 Receptor Tyrosine Kinase 4 (ERBB4), DENN Domain Containing 1A (DENND1A), FSH Subunit Beta (FSHB) and Zinc Finger And BTB Domain Containing 16 (ZBTB16). When adding BMI as a covariate only one of the novel variants remained genome-wide significant in the meta-analysis (the EstBB lead signal in CHEK2 rs182075939, P = 1.9×10-16, OR = 1.74 [1.5-2.01]) possibly owing to reduced sample size. LARGE SCALE DATA: The age- and BMI-adjusted GWAS meta-analysis summary statistics are available for download from the GWAS Catalog with accession numbers GCST90044902 and GCST90044903. LIMITATIONS, REASONS FOR CAUTION: The main limitation was the low prevalence of PCOS in registers; however, the ones with the diagnosis most likely represent the most severe cases. Also, BMI data were not available for all (63% for FinnGen, 76% for EstBB), and the biobank setting limited the accessibility of PCOS phenotypes and laboratory values. WIDER IMPLICATIONS OF THE FINDINGS: This study encourages the use of isolated populations to perform genetic association studies for the identification of rare variants contributing to the genetic landscape of complex diseases such as PCOS. STUDY FUNDING/COMPETING INTEREST(S): This work has received funding from the European Union's Horizon 2020 research and innovation programme under the MATER Marie Sklodowska-Curie grant agreement No. 813707 (N.P.-G., T.L., T.P.), the Estonian Research Council grant (PRG687, T.L.), the Academy of Finland grants 315921 (T.P.), 321763 (T.P.), 297338 (J.K.), 307247 (J.K.), 344695 (H.L.), Novo Nordisk Foundation grant NNF17OC0026062 (J.K.), the Sigrid Juselius Foundation project grants (T.L., J.K., T.P.), Finska Läkaresällskapet (H.L.) and Jane and Aatos Erkko Foundation (H.L.). The funders had no role in study design, data collection and analysis, publishing or preparation of the manuscript. The authors declare no conflicts of interest.


Assuntos
Síndrome do Ovário Policístico , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Humanos , Síndrome do Ovário Policístico/complicações , População Branca/genética
15.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864945

RESUMO

Gonadotropin-releasing hormone (GnRH) regulates gonadal function via its stimulatory effects on gonadotropin production by pituitary gonadotrope cells. GnRH is released from the hypothalamus in pulses and GnRH pulse frequency differentially regulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis and secretion. The GnRH receptor (GnRHR) is a G protein-coupled receptor that canonically activates Gα q/11-dependent signaling on ligand binding. However, the receptor can also couple to Gα s and in vitro data suggest that toggling between different G proteins may contribute to GnRH pulse frequency decoding. For example, as we show here, knockdown of Gα s impairs GnRH-stimulated FSH synthesis at low- but not high-pulse frequency in a model gonadotrope-derived cell line. We next used a Cre-lox conditional knockout approach to interrogate the relative roles of Gα q/11 and Gα s proteins in gonadotrope function in mice. Gonadotrope-specific Gα q/11 knockouts exhibit hypogonadotropic hypogonadism and infertility, akin to the phenotypes seen in GnRH- or GnRHR-deficient mice. In contrast, under standard conditions, gonadotrope-specific Gα s knockouts produce gonadotropins at normal levels and are fertile. However, the LH surge amplitude is blunted in Gα s knockout females and postgonadectomy increases in FSH and LH are reduced both in males and females. These data suggest that GnRH may signal principally via Gα q/11 to stimulate gonadotropin production, but that Gα s plays important roles in gonadotrope function in vivo when GnRH secretion is enhanced.


Assuntos
Cromograninas/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Gonadotrofos/metabolismo , Gonadotropinas/metabolismo , Animais , Castração , Linhagem Celular , Cromograninas/genética , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Gonadotropinas/genética , Células HEK293 , Humanos , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores LHRH/genética , Receptores LHRH/fisiologia , Maturidade Sexual , Transdução de Sinais/fisiologia
16.
Reprod Toxicol ; 108: 18-27, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954075

RESUMO

Phthalates are chemicals used in products including plastics, personal care products, and building materials, leading to widespread contact. Previous studies on prenatal exposure to Di-(2-ethylhexyl) phthalate (DEHP) in mice and humans demonstrated pubertal timing and reproductive performance could be affected in exposed offspring. However, the impacts at the pituitary, specifically regarding signaling pathways engaged and direct effects on the gonadotropins LH and FSH, are unknown. We hypothesized prenatal exposure to DEHP during a critical period of embryonic development (e15.5 to e18.5) will cause sex-specific disruptions in reproduction-related mRNA expression in offspring's pituitary due to interference with androgen and aryl hydrocarbon receptor (AhR) signaling. We found that prenatal DEHP exposure in vivo caused a significant increase in Fshb specifically in males, while the anti-androgen flutamide caused significant increases in both Lhb and Fshb in males. AhR target gene Cyp1b1 was increased in both sexes in DEHP-exposed offspring. In embryonic pituitary cultures, the DEHP metabolite MEHP increased Cyp1a1 and Cyp1b1 mRNA in both sexes and Cyp1b1 induction was reduced by co-treatment with AhR antagonist. AhR reporter assay in GHFT1 cells confirmed MEHP can activate AhR signaling. Lhb, Fshb and Gnrhr mRNA were significantly decreased in both sexes by MEHP, but co-treatment with AhR antagonist did not restore mRNA levels in pituitary culture. In summary, our data suggest phthalates can directly affect the function of the pituitary by activating AhR signaling and altering gonadotropin expression. This indicates DEHP's impacts on the pituitary could contribute to reproductive dysfunctions observed in exposed mice and humans.


Assuntos
Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Hipófise/efeitos dos fármacos , Plastificantes/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Expressão Gênica/efeitos dos fármacos , Hormônio Luteinizante Subunidade beta/genética , Masculino , Troca Materno-Fetal , Camundongos , Hipófise/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Reprodução/genética
17.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948037

RESUMO

The pituitary is an organ of dual provenance: the anterior lobe is epithelial in origin, whereas the posterior lobe derives from the neural ectoderm. The pituitary gland is a pivotal element of the axis regulating reproductive function in mammals. It collects signals from the hypothalamus, and by secreting gonadotropins (FSH and LH) it stimulates the ovary into cyclic activity resulting in a menstrual cycle and in ovulation. Pituitary organogenesis is comprised of three main stages controlled by different signaling molecules: first, the initiation of pituitary organogenesis and subsequent formation of Rathke's pouch; second, the migration of Rathke's pouch cells and their proliferation; and third, lineage determination and cellular differentiation. Any disruption of this sequence, e.g., gene mutation, can lead to numerous developmental disorders. Gene mutations contributing to disordered pituitary development can themselves be classified: mutations affecting transcriptional determinants of pituitary development, mutations related to gonadotropin deficiency, mutations concerning the beta subunit of FSH and LH, and mutations in the DAX-1 gene as a cause of adrenal hypoplasia and disturbed responsiveness of the pituitary to GnRH. All these mutations lead to disruption in the hypothalamic-pituitary-ovarian axis and contribute to the development of primary amenorrhea.


Assuntos
Predisposição Genética para Doença/genética , Hipogonadismo/genética , Mutação , Receptor Nuclear Órfão DAX-1/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Humanos , Hormônio Luteinizante Subunidade beta/genética
18.
Front Endocrinol (Lausanne) ; 12: 760616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659133

RESUMO

Background: Single nucleotide variants (SNVs) FSHB:c.-211G>T, FSHR:c.919G>A, and FSHR:c.2039G>A were reported to be associated with the variability in FSH and LH levels, and in vitro fertilization (IVF) outcomes. In this study, we aimed to evaluate the effects of FSHB:c.-211G>T, FSHR:c.919G>A, and FSHR:c.2039G>A variants, alone and combined, on the hormonal profile and reproduction outcomes of women with endometriosis. Methods: A cross-sectional study was performed comprising 213 infertile Brazilian women with endometriosis who underwent IVF treatment. Genotyping was performed using TaqMan real-time PCR. Variables were compared according to the genotypes of each variant and genetic models, and the combined effects of the SNVs were evaluated using the multifactorial dimensionality reduction method. Results: FSHB:c.-211G>T affected LH levels in women with overall endometriosis and minimal/mild disease. FSHR:c.919G>A affected FSH levels in women with overall endometriosis and the number of oocytes retrieved in those with moderate/severe endometriosis. Moreover, the FSHR:c.2039G>A affected FSH levels in women with overall endometriosis, LH levels and total amount of rFSH in those with minimal/mild disease, and number of follicles and number of oocytes retrieved in those with moderate/severe endometriosis. No effect on hormone profile or reproductive outcomes was observed when the genotypes were combined. Conclusions: Variants of the FSHB and FSHR genes separately interfered with the hormonal profiles and IVF outcomes of women with endometriosis.


Assuntos
Endometriose/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Infertilidade Feminina/genética , Polimorfismo de Nucleotídeo Único/genética , Resultado da Gravidez/genética , Receptores do FSH/genética , Reprodução/genética , Adulto , Alelos , Brasil , Estudos Transversais , Feminino , Frequência do Gene/genética , Genótipo , Humanos , Gravidez
19.
Can J Vet Res ; 85(3): 186-192, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34248262

RESUMO

The purpose of this study was to analyze the morpho-functional features of the ovaries and uterus of sows with different genotypes for the estrogen receptor (ESR), prolactin receptor (PRLR), and follicle-stimulating hormone subunit beta (FSHß) genes associated with reproductive traits. Healthy Large White sows were studied. The genotypic status of the ESR, PRLR, and FSHß genes was detected by polymerase chain reaction-restriction fragment length polymorphism. The structure of the ovaries and uterus was studied using quantitative assessment of organs and histological research. Sows with the ESR BB genotype significantly exceeded animals with the ESR AA genotype in milk yield (by 0.3 kg) and in the number of piglets at birth (by 0.9 animals) and at weaning (by 0.7 animals). Sows with the ESR AB genotype were midway between those with ESR BB and ESR AA genotypes in terms of these reproductive traits. Animals with the PRLR AA genotype significantly exceeded those with the PRLR BB genotype in the number of piglets born (P < 0.05); the differences in litter weight at birth were not significant. Compared to other genotypes, sows with genotypes ESR BB (P < 0.05) and PRLR AA (AB) (P < 0.05) had larger uteruses and more yellow bodies, tertiary follicles, and primordial follicles in their ovaries. Animals with the FSHß BB genotype significantly exceeded animals with the FSHß AB genotype in the length of uterus by 21 cm (P < 0.05).


Le but de cette étude était d'analyser les caractéristiques morpho-fonctionnelles des ovaires et de l'utérus de truies avec différents génotypes pour les gènes du récepteur des oestrogènes (ESR), du récepteur de la prolactine (PRLR) et de la sous-unité bêta de l'hormone folliculostimulante (FSHß) associés à des traits de reproduction. Des truies Large White en bonne santé ont été étudiées. Le statut génotypique des gènes ESR, PRLR et FSHß a été détecté par polymorphisme de la longueur des fragments de restriction par amplification en chaîne par la polymérase. La structure des ovaires et de l'utérus a été étudiée en utilisant une évaluation quantitative des organes et une recherche histologique.Les truies avec le génotype ESR BB dépassaient significativement les animaux avec le génotype ESR AA en rendement laitier (de 0,3 kg) et en nombre de porcelets à la naissance (de 0,9 animal) et au sevrage (de 0,7 animal). Les truies avec le génotype ESR AB étaient à mi-chemin entre celles avec les génotypes ESR BB et ESR AA en termes de ces traits de reproduction. Les animaux avec le génotype PRLR AA dépassaient significativement ceux avec le génotype PRLR BB dans le nombre de porcelets nés (P < 0,05); les différences de poids des portées à la naissance n'étaient pas significatives. Comparativement aux autres génotypes, les truies avec les génotypes ESR BB (P < 0,05) et PRLR AA (AB) (P < 0,05) avaient des utérus plus gros et plus de corps jaunes, de follicules tertiaires et de follicules primordiaux dans leurs ovaires. Les animaux avec le génotype FSHß BB dépassaient significativement les animaux avec le génotype FSHß AB pour la longueur de l'utérus de 21 cm (P < 0,05).(Traduit par Docteur Serge Messier).


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Ovário/anatomia & histologia , Receptores de Estrogênio/genética , Receptores da Prolactina/genética , Suínos/anatomia & histologia , Útero/anatomia & histologia , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Gravidez , Suínos/genética , Suínos/metabolismo
20.
Environ Toxicol Pharmacol ; 87: 103694, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34153509

RESUMO

In the present study, responses of the Chinese brown frog (Rana chensinensis) to exposure to different doses and duration of Octyphenol (OP) which degraded from alkylphenol ethoxylates (APEs) were characterized during the adult periods. The effects of OP on growth, development and reproduction and the expression of genes in gonad were investigated. The expression levels of fshß, lhß, fshr and lhr had significant differences as the exposure time increased. The pathological and morphological changes were also observed in the OP treatments. Furthermore, the number of TUNEL positive cells and the TUNEL index was elevated after exposed to OP. Besides that, OP treatment could influence its mating behavior and reduce the fertilization rates. Taken together, these results indicated that OP disrupt sex steroid signaling, normal development of spermatogenesis, courtship behavior of male frogs and decline fertilization rate in R. chensinensis.


Assuntos
Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Ranidae , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Expressão Gênica/efeitos dos fármacos , Hormônio Luteinizante Subunidade beta/genética , Masculino , Ranidae/genética , Ranidae/crescimento & desenvolvimento , Ranidae/fisiologia , Receptores do FSH/genética , Receptores do LH/genética , Comportamento Sexual Animal/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Testículo/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...